Search results

Search for "tip structure" in Full Text gives 17 result(s) in Beilstein Journal of Nanotechnology.

Quantitative wear evaluation of tips based on sharp structures

  • Ke Xu and
  • Houwen Leng

Beilstein J. Nanotechnol. 2024, 15, 230–241, doi:10.3762/bjnano.15.22

Graphical Abstract
  • between the sample and the tip was confirmed, and the potential of using sharp structures to describe the tip structure was examined. Distinct matrix arrays were created for the tip and the sample shapes. To produce an image of a sample matrix using a tip matrix, the tip matrix was positioned
PDF
Album
Full Research Paper
Published 14 Feb 2024

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • the tip approaches the sample surface, an interaction force is generated that deflects (bends or stretches) the probe cantilever. As the AFM probe moves across the sample surface (in the X and Y directions), morphological information is obtained over the entire scan area. Its tip structure and the
PDF
Album
Review
Published 03 Nov 2022

Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy

  • Nicholas Chan,
  • Carrie Lin,
  • Tevis Jacobs,
  • Robert W. Carpick and
  • Philip Egberts

Beilstein J. Nanotechnol. 2020, 11, 729–739, doi:10.3762/bjnano.11.60

Graphical Abstract
  • the separation distance between the tip and substrate continuously as the sample is displaced. The two-dimensional profile of the tip apex geometry was obtained through simultaneously acquired TEM images during experiments (Figure 1a) and transformed into a three-dimensional tip structure by using the
  • holder, transferred into the vacuum chamber, and baked at 120 °C for 1 h to remove any residual adsorbed moisture and other adsorbates on the probe. No tip preparation beyond this was conducted, to ensure that the tip structure remained as similar to the initial images and as small as possible. Before
PDF
Album
Full Research Paper
Published 06 May 2020

Intuitive human interface to a scanning tunnelling microscope: observation of parity oscillations for a single atomic chain

  • Sumit Tewari,
  • Jacob Bakermans,
  • Christian Wagner,
  • Federica Galli and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2019, 10, 337–348, doi:10.3762/bjnano.10.33

Graphical Abstract
  • -empirical potentials for such highly under-coordinated systems. As the actual bulk shape of the tip is unknown in our experiments we assume an isotropic tip structure, which could also cause certain discrepancies between the experiment and the simulation. Conclusion We have modified our low-temperature
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2019

Apparent tunneling barrier height and local work function of atomic arrays

  • Neda Noei,
  • Alexander Weismann and
  • Richard Berndt

Beilstein J. Nanotechnol. 2018, 9, 3048–3052, doi:10.3762/bjnano.9.283

Graphical Abstract
  • apparent barrier height Φapp [27]. Although there is no simple expression connecting Φapp and the local work function of the sample Φ (partially because the tip structure is usually unknown), it is common practice to assume that measured variations of Φapp represent those of Φ [28][29][30][31]. Here we
PDF
Album
Letter
Published 17 Dec 2018

Investigation of CVD graphene as-grown on Cu foil using simultaneous scanning tunneling/atomic force microscopy

  • Majid Fazeli Jadidi,
  • Umut Kamber,
  • Oğuzhan Gürlü and
  • H. Özgür Özer

Beilstein J. Nanotechnol. 2018, 9, 2953–2959, doi:10.3762/bjnano.9.274

Graphical Abstract
  • images. In AFM images as well, tip structure and force/force gradient regime may result in different relative contrasts at the atomic scale. During the past decade, STM and AFM studies of graphene have been shown to yield honeycomb or triangular patterns due to different experimental parameters or sample
  • der Waals (vdW) interaction for a small tip structure only, but not the electrostatic force. The discrepancy in the value of the maximum attractive force and the interaction range of the total measured force, which are much larger than the values derived from the theoretical calculations, is
PDF
Album
Full Research Paper
Published 28 Nov 2018

The effect of flexible joint-like elements on the adhesive performance of nature-inspired bent mushroom-like fibers

  • Elliot Geikowsky,
  • Serdar Gorumlu and
  • Burak Aksak

Beilstein J. Nanotechnol. 2018, 9, 2893–2905, doi:10.3762/bjnano.9.268

Graphical Abstract
  • microscopy (CLSM) of a lateral view of discoidal (mushroom-shaped) adhesive hairs in a male ladybird beetle. Differences in the autofluorescence indicate the presence and distribution of different materials. Blue regions (transitions from the hair shaft to the tip structure) indicate portions of the soft
  • , rubber-like protein resilin. Light blue regions (hair shaft and discoidal tip structure) mainly consist of stiffer chitinous material. Adapted from [32]. b) Scanning electron microscope (SEM) images of synthetic, polymeric, bent fibers inspired by the adhesive hairs of the beetle, showing joints between
PDF
Album
Full Research Paper
Published 19 Nov 2018

SO2 gas adsorption on carbon nanomaterials: a comparative study

  • Deepu J. Babu,
  • Divya Puthusseri,
  • Frank G. Kühl,
  • Sherif Okeil,
  • Michael Bruns,
  • Manfred Hampe and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 1782–1792, doi:10.3762/bjnano.9.169

Graphical Abstract
  • materials. Carbon nanohorns (CNHs) have a tubular structure with a closed cone-tip structure at one end (Figure 1c). Individual CNHs are usually single-walled with an internal diameter of 2–4 nm. The unique characteristic of CNHs is the rigid spherically aggregated structure with diameters of 50–100 nm [19
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Robust procedure for creating and characterizing the atomic structure of scanning tunneling microscope tips

  • Sumit Tewari,
  • Koen M. Bastiaans,
  • Milan P. Allan and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2017, 8, 2389–2395, doi:10.3762/bjnano.8.238

Graphical Abstract
  • the atomic scale. In spite of the critical role of the STM tip, procedures for controlling the atomic-scale shape of STM tips have not been rigorously justified. Here, we present a method for preparing tips in situ while ensuring the crystalline structure and a reproducibly prepared tip structure up
  • -temperature annealing as for many semiconductors. However, a well defined tip structure at the atomic scale is still hard to achieve. Mechanical grinding [1], electro-polishing [11] or electrochemical etching [12][13] are standard ex situ methods for preparing microscopically sharp tips. The tip apex can be
  • cleaned in situ using, e.g., Ar ion sputtering or electron bombardment [14], but this may disrupt the crystalline structure, which cannot be repaired by annealing since this will yield a blunt tip. For all these methods, at the atomic scale the tip structure is poorly controlled and could even have
PDF
Album
Full Research Paper
Published 13 Nov 2017

Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules

  • Philipp Leinen,
  • Matthew F. B. Green,
  • Taner Esat,
  • Christian Wagner,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2015, 6, 2148–2153, doi:10.3762/bjnano.6.220

Graphical Abstract
  • single failure of the tip–molecule bond. It is important to note that in the course of the manipulation experiments in Figure 4 the molecule was never fully detached from the surface in order to prevent a tip structure change from happening, e.g., due to a jump of the extracted molecule onto the tip apex
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2015

Nano-contact microscopy of supracrystals

  • Adam Sweetman,
  • Nicolas Goubet,
  • Ioannis Lekkas,
  • Marie Paule Pileni and
  • Philip Moriarty

Beilstein J. Nanotechnol. 2015, 6, 1229–1236, doi:10.3762/bjnano.6.126

Graphical Abstract
  • more than 1 nm into the repulsive (i.e., positive force) regime of the probe–nanocrystal interaction potential. Constant height force microscopy has been used to map tip–sample interactions in this regime, revealing inhomogeneities which arise from the convolution of the tip structure with the ligand
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2015

Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

  • Adam Sweetman and
  • Andrew Stannard

Beilstein J. Nanotechnol. 2014, 5, 386–393, doi:10.3762/bjnano.5.45

Graphical Abstract
  • behaviour may be increased dramatically if a judicious knowledge of the tip structure is available, for example by use of in situ field ion microscopy (FIM), transmission electron microscopy (TEM), and/or scanning electron microscopy (SEM), on well-defined tips both before and after force spectroscopy
  • indentation of the tip into the surface will require the tip structure checks to be repeated. This is likely to be even more important in the case of experiments using qPlus-type setups, where STM tip treatment methods are often used to prepare tips in situ on the surface. In these cases, significant transfer
PDF
Album
Full Research Paper
Published 01 Apr 2014

Structural development and energy dissipation in simulated silicon apices

  • Samuel Paul Jarvis,
  • Lev Kantorovich and
  • Philip Moriarty

Beilstein J. Nanotechnol. 2013, 4, 941–948, doi:10.3762/bjnano.4.106

Graphical Abstract
  • structural evolution of the tip apex within a low temperature NC-AFM experiment, we simulated a repeated tip–surface indentation until the tip structure converged to a stable termination and the characteristic hysteretic behaviour was no longer observed. Our calculations suggest that varying just a single
  • rotational degree of freedom can have as measurable an impact on the tip–surface interaction as a completely different tip structure. Keywords: apex structure; atomic force microscopy; DFT; dissipation; hysteresis; NC-AFM; silicon; spectroscopy; tip structure; Introduction The theoretical treatment of
  • simulations for tip identification is not always as critical. For instance, there has been significant recent progress in developing experimentally driven methods to determine or engineer the tip structure with the use of CO molecules either adsorbed to the scanning probe tip [11], or used to reverse image a
PDF
Album
Full Research Paper
Published 20 Dec 2013

Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

  • Mehmet Z. Baykara,
  • Omur E. Dagdeviren,
  • Todd C. Schwendemann,
  • Harry Mönig,
  • Eric I. Altman and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2012, 3, 637–650, doi:10.3762/bjnano.3.73

Graphical Abstract
  • to be taken into account to understand the full effect of tip structure and chemistry on NC-AFM measurements [49][50][51]. Controlling the chemical identity of the probe tip employed in NC-AFM experiments down to the last few atoms of the tip apex has proven to be extremely difficult in the past due
PDF
Album
Full Research Paper
Published 11 Sep 2012

Graphite, graphene on SiC, and graphene nanoribbons: Calculated images with a numerical FM-AFM

  • Fabien Castanié,
  • Laurent Nony,
  • Sébastien Gauthier and
  • Xavier Bouju

Beilstein J. Nanotechnol. 2012, 3, 301–311, doi:10.3762/bjnano.3.34

Graphical Abstract
  • ][41][42][43][44][104][105][106]. Indeed, there is a discrepancy in the interpretation of the brightest features on the surface. By coupling STM and FM-AFM [41][44], one may identify the actual graphite structure observed in the images. Nevertheless, the role played by the tip (structure and
PDF
Album
Full Research Paper
Published 02 Apr 2012

An NC-AFM and KPFM study of the adsorption of a triphenylene derivative on KBr(001)

  • Antoine Hinaut,
  • Adeline Pujol,
  • Florian Chaumeton,
  • David Martrou,
  • André Gourdon and
  • Sébastien Gauthier

Beilstein J. Nanotechnol. 2012, 3, 221–229, doi:10.3762/bjnano.3.25

Graphical Abstract
  • occasionally abrupt variations of the Kelvin voltage (~100 mV), which signal evolutions of the tip structure, but these events were never accompanied by a significant change in the Kelvin contrast as reported in [31]. We conclude that our tips always had the same electrostatic behavior. We also measured slow
PDF
Album
Full Research Paper
Published 12 Mar 2012

Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

  • Thomas König,
  • Georg H. Simon,
  • Lars Heinke,
  • Leonid Lichtenstein and
  • Markus Heyde

Beilstein J. Nanotechnol. 2011, 2, 1–14, doi:10.3762/bjnano.2.1

Graphical Abstract
  • tip structure was not allowed to relax. However, the relaxation of the MgO surface has been found to be very small for the calculated distances, where no direct contact is established. The outward relaxation of the O anion at 3.5 Å is about 0.12 Å. The results of the experimental distance dependent
PDF
Album
Review
Published 03 Jan 2011
Other Beilstein-Institut Open Science Activities